Acute Limb Ischemia: Very Different from Chronic Critical Limb Ischemia

Alvaro Alonso, MD, FSVM

Director ad interim. Vascular Medicine and Endovascular Interventions
Associate Director. Interventional Cardiology Fellowship Program
Assistant Professor of Medicine
Tulane University Heart and Vascular Institute
Tulane University School of Medicine
New Orleans, LA, USA
Disclosures

Grant/Research Support:

• Supported in part by 1 U54 GM104940 from the National Institute of General Medical Sciences of the National Institutes of Health, which funds the Louisiana Clinical and Translational Science Center. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health.

• No financial disclosures
Definitions

<table>
<thead>
<tr>
<th>Acute Limb Ischemia (ALI)</th>
<th>Chronic Critical Limb Ischemia (CLI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Sudden decrease or absence of perfusion in a limb</td>
<td>• > 2 weeks duration</td>
</tr>
<tr>
<td>• Pain</td>
<td>• Ischemic rest pain or</td>
</tr>
<tr>
<td>• Pallor</td>
<td>• wounds or</td>
</tr>
<tr>
<td>• Pulselessness</td>
<td>• gangrene</td>
</tr>
<tr>
<td>• Paralysis</td>
<td>• due to PAD</td>
</tr>
<tr>
<td>• Polar temperature</td>
<td></td>
</tr>
</tbody>
</table>

Chronic Critical Limb Ischemia (CLI)

- > 2 weeks duration
- Ischemic rest pain or
- wounds or
- gangrene
- due to PAD
Further definitions of CLI

<table>
<thead>
<tr>
<th>Hemodynamic parameters defining Critical Limb Ischemia</th>
<th>Absolute ankle pressure</th>
<th>Absolute great toe pressure</th>
<th>Transcutaneous partial oxygen pressure (TCPO<sub>2</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute ankle pressure</td>
<td><50 mmHg or <70 mmHg</td>
<td>Plus rest pain</td>
<td>Estimation of wound healing, considerable variability</td>
</tr>
<tr>
<td>Absolute great toe pressure</td>
<td><30 mmHg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transcutaneous partial oxygen pressure (TCPO<sub>2</sub>)</td>
<td><30 mmHg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plus ischemic lesion(s)

Plus if non-compressible ABI (>1.40)

Eur Heart J. 2011;32(22):2851-906
Etiologies

ALI

- Trauma
- Iatrogenic
- Graft or angioplasty occlusion
- Popliteal aneurysm thrombosis
- Other:
 - Aortic dissection
 - Plegmasia cerulea
 - Ergotism
 - Drug use

Thrombosis 41%
Embolism 38%
Graft or angioplasty occlusion 15%
Popliteal aneurysm thrombosis 3%
Trauma 2%
Iatrogenic 1%

CLI

- Progressive Atherosclerotic Calcific PAD

Other:
- Aortic dissection
- Plegmasia cerulea
- Ergotism
- Drug use

TASC II. Eur J Vasc Endovasc Surg. 2007;33 Suppl 1:S1-75
Incidence

ALI
- 14 to 26 per 100,000/yr
- ~ 15% of LE-PAD cases

CLI
- 50 to 100 per 100,000/yr

J Vasc Surg. 2014;60(3):669-77.e2
Eur Heart J. 2011;32(22):2851-906
Treatment – ALI

Acute limb ischaemia

Viable
- Heparin
- Work-up
 - Risk evaluation
- Semi-urgent
 - Imaging technique

Limb Threatening
- Heparin
- Emergent
 - Imaging technique
- Decision making

Irreversible
- Amputation*

Catheter directed Thrombolysis–thrombectomy

Feasible—proceed

Unfeasible

Underlying lesion

No

Endovascular revascularization

Feasible—proceed

Unfeasible

Open revascularization

Yes

Feasible—proceed

Unfeasible

Medical Treatment

* Sometimes, differentiation between a salvageable and unsalvageable extremity is almost impossible. If the doubt is raised, any surgical or endovascular revascularization action is justified even in advanced profound ischaemia.
Treatment – ALI

• Catheter-directed or pharmacomechanical fibrinolysis
• Surgery

Ann Surg. 1994; 220: 251–266
Treatment – CLI

Management of critical limb ischaemia

- Rest pains
 - Pain control (morphine)
 - Urgent revascularization
- Ischaemic lesion, gangrene
 - Pain control (morphine), wound care, treatment of infection (antibiotics)

Feasible
- Endovascular revascularization
 - Technical failure, endovascular revascularization unsuitable
 - Surgical revascularization

Unfeasible
- (Endovascular or surgical)
 - Re-do procedure

Favourable
- Control CVD risk factors, debridement, shoe adaptation (removal of weight-bearing stress to lesion), surveillance

Unfavourable
- Control CVD risk factors, pain control (morphine), wound care
 - Prostaglandins, consider spinal cord stimulation
 - Amputation, rehabilitation

Eur Heart J. 2011;32(22):2851-906
Treatment – CLI

- Multidisciplinary Amputation Prevention Team

- Restoration of perfusion
 - Endovascular vs. Surgical
 - Angiosome-directed

- Endovascular advantages
 - low complication rates, 0.5% to 4.0%
 - high technical success rates ~ 90

- Aggressive Wound Care

Eur Heart J. 2011;32(22):2851-906
Outcomes

ALI

ALI Outcomes (%)
U.S. Medicare population 1998-2009

- Amputation: 6.4
- Mortality: 11
- 1-year: 9

CLI

- 6-month outcomes (pooled, 19 studies)

- Dead 20%
- Alive with amputation 35%
- Alive without amputation 45%

References:

- J Vasc Surg. 2014 Sep;60(3):669-77
Long-term medical therapy

- Adherence to guideline-recommended medical therapies
 - ASA
 - Statin
 - ACEI/ARB
 - Smoking cessation

(Retrospective, single-center, N = 1091)
Long-term medical therapy

- Cilostazol

Thank you
Acute Limb Ischemia: Very Different from Chronic Critical Limb Ischemia

Alvaro Alonso, MD, FSVM

Director ad interim. Vascular Medicine and Endovascular Interventions
Associate Director. Interventional Cardiology Fellowship Program
Assistant Professor of Medicine
Tulane University Heart and Vascular Institute
Tulane University School of Medicine
New Orleans, LA, USA