Novel Approach to Treatment of Aortoiliac Disease with Bifurcated Unibody Graft

Robert E. Beasley, MD, FSIR, FSCAI
Director of Vascular/Interventional Radiology
Mount Sinai Medical Center
Miami Beach, FL
Disclosures

Speaker/Trainer/Advisory Board:

• Abbott Vascular
• BARD
• BSCI
• Cardinal Health/Cordis
• Cook Medical
• CSI
• Endologix

• Gore
• Lake Region Medical
• Medtronic
• Penumbra
• Phillips/Volcano
• Spectranetics
• Terumo/Bolton
Treatment of Aortoiliac Occlusive Disease

Aorto-bifemoral bypass
• Operative mortality 1 – 4%
 • Higher for elderly and comorbidities
• 10-year patency 75 – 95%
 • Lower for younger and female patients, and those with critical limb ischemia

DeVries SO et al. JVS 1997
Hertzer NR et al. JVS 2007
“Kissing” Balloons and Stents

- Distal aortic and proximal iliac lesions difficult to treat endovascularly
- Kissing balloons described in 1985\(^1\)
- Kissing stents described in 1991\(^2,3\)
- Limitations:
 - Limited data on performance in CLI
 - Decreased patency in more complex lesions, particularly involving significant portions of the infrarenal aorta

1. Tegtmeyer CJ. Radiology. 1985
Kissing Stents

• Patency affected by
 • Radial mismatch associated with failure\(^1\)
 • Crossing stent configuration associated with patency loss\(^2\)

• Raises the bifurcation

Data on Patency of Kissing Stents

<table>
<thead>
<tr>
<th>Study</th>
<th>3 year</th>
<th>4 year</th>
<th>5 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haulon 2002</td>
<td>79%, 98%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sharafuddin 2008</td>
<td></td>
<td>81%, 94%</td>
<td></td>
</tr>
<tr>
<td>Abello 2012</td>
<td></td>
<td></td>
<td>65%, 82%</td>
</tr>
</tbody>
</table>

- Above studies have significant variability of TASC classification and Rutherford category
- Primary assisted patency 65% at 2 years in more advanced TASC lesions
- Covered stents appear to have better patency than bare metal stents in TASC C and D lesions
- This effect may also apply to “kissing” stents

5. Mwipatayi BP, COBEST Co-investigators. JVS 2011
CERAB Technique

• Covered Endovascular Reconstruction of the Aortic Bifurcation
• 3 Covered Stents to Reduce Radial Mismatch
• Requires large, covered stents to cover distal aorta -- not available in U.S.
Unibody Stent Graft

- Unibody design for AAA repair (EVAR)
- Sits on the aortic bifurcation
- Sizes from 22mm to 28mm with various iliac sizes and lengths
- Low 17F profile (percutaneous)
- Percutaneous approval

Role in Aortoiliac Occlusive Disease?

CAUTION: The AFX Stent Graft is not approved in any market for the treatment of aortoiliac occlusive disease
Unibody Stent Graft

- Preserves aortic bifurcation
- Avoid the possibility of ‘missing’ CIA lesion
- No limb competition in a narrow distal aorta
- Fabric allows for significant oversizing without wrinkle / in-folding
- Does not preclude future aortic interventions (TEVAR, PTA, etc)
- “Covered” stent - protective in cases of potential rupture (heavily calcified lesions)

CAUTION: The AFX Stent Graft is not approved in any market for the treatment of aortoiliac occlusive disease
Multicenter Experience of AFX

- Multicenter review of 91 patients
- TASC C and D lesions; 63% unfit for open surgery
- Technical success 100%
- 30d mortality 1% (1/91)
- Mean follow-up 22 months
- 1- and 2-yr primary patency rates ≈90%
- Freedom from secondary interventions 92%

The AFX System has not been approved for treatment of aortoiliac occlusive disease in any geography.
Adjunctive Procedures at Time of Treatment

<table>
<thead>
<tr>
<th>Patients, n (%)</th>
<th>Planned vs. unplanned</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 87</td>
<td></td>
</tr>
<tr>
<td>Endovascular procedures</td>
<td>56 (64)</td>
</tr>
<tr>
<td>Aortic stent</td>
<td>51 (59)</td>
</tr>
<tr>
<td>Iliac stent</td>
<td>10 (11)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arteries treated</th>
<th>EIA = 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iliac stent</td>
<td>53 (61)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CIA = 56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical procedures</td>
</tr>
<tr>
<td>CFA endarterectomy</td>
</tr>
<tr>
<td>Bypass</td>
</tr>
</tbody>
</table>

Maldonado et al., EJVES 2016
Complications

<table>
<thead>
<tr>
<th>Complication</th>
<th>n = 20/91 (22)</th>
<th>Unfit for open surgery n = 9/34 (26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groin infection</td>
<td>6 (7)</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Respiratory failure</td>
<td>4 (4)</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Groin hematoma</td>
<td>4 (4)</td>
<td>3 (9)</td>
</tr>
<tr>
<td>Rupture</td>
<td>4 (4)</td>
<td>3 (9)</td>
</tr>
<tr>
<td>Hemodynamic instability</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Dissection</td>
<td>4 (4)</td>
<td>3 (9)</td>
</tr>
<tr>
<td>Thromboembolic event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intestinal</td>
<td>1 (^a)</td>
<td></td>
</tr>
<tr>
<td>Spinal cord</td>
<td>3 (3)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Buttock</td>
<td>2 (^a)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Lower extremity</td>
<td>2 (2)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Femoral thrombosis</td>
<td></td>
<td>1 (3)</td>
</tr>
<tr>
<td>Stroke</td>
<td>1 (1)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Contrast nephropathy</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>30-d mortality (^a)</td>
<td>1 (1) (^a)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Note. Data are n (%).

\(^a\) Single mortality occurred as a result of a thromboembolic event resulting in diffuse pelvic ischemia and intestinal infarction.
Multicenter Experience of AFX

Patient improvement in ischemic claudication and ABI at 6 month follow-up

73% patients had 3 to 5 Rutherford Scale improvement
42% patients had increased ABI of 81%-100%

Maldonado et al. Eur J Vas Endovasc Surg 2016;52:64-74

The AFX System has not been approved for treatment of aortoiliac occlusive disease in any geography.
Patency

<table>
<thead>
<tr>
<th>Patency</th>
<th>30d</th>
<th>6 mo</th>
<th>1 yr</th>
<th>2 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>100%</td>
<td>98%</td>
<td>91%</td>
<td>89%</td>
</tr>
<tr>
<td>Assisted</td>
<td>100%</td>
<td>100%</td>
<td>97%</td>
<td>97%</td>
</tr>
<tr>
<td>Secondary</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Freedom from Secondary Intervention

88.9% and 87.5% at 1 and 2 years

Maldonado et al., EJVES 2016
Case 3
Case 4
Case 5
Conclusions

• High technical success, even in TASC C and D
• Low 30-day mortality and low procedural complication rate
• 89% - 100% patency throughout follow-up
• 88% freedom from secondary interventions at 2 years
• Procedure can be safely combined with adjunctive lower extremity interventions (usually planned)

Maldonado et al., EJVES 2016
THANK YOU!
Novel Approach to Treatment of Aortoiliac Disease with Bifurcated Unibody Graft

Robert E. Beasley, MD, FSIR, FSCAI
Director of Vascular/Interventional Radiology
Mount Sinai Medical Center
Miami Beach, FL